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Società Italiana di Fisica
Springer-Verlag 2001

A wave automaton for Maxwell’s equations

C. Vannestea
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Abstract. This paper presents an extension to electromagnetic fields of the wave automaton, which was
introduced in recent years for describing wave propagation in inhomogeneous media. Using elementary
processes obeying a discrete Huygens’ principle and satisfying fundamental symmetries such as time reversal
and reciprocity, this new wave automaton is capable of modeling Maxwell’s equations in 3+1 dimensions.
It supplements the methods that were developed early for scalar and spinor fields.
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1 Introduction

The wave automaton is a numerical method devoted to
wave propagation in random media [1,2]. Inspired from
lattice gas automata, it introduces real or complex quan-
tities that propagate along the bonds and scatter over the
nodes of a discrete lattice. In this paper, we shall refer
to these real or complex quantities as currents. Owing to
the scattering processes at the lattice nodes, which is the
counterpart of the collision rules in lattice gas automata,
the wave automaton can be considered as a discrete mod-
eling of Huygens’ principle [3]. The currents are also sim-
ilar (but not identical) to the voltage pulses of the Trans-
mission Line Matrix Modeling method (TLM) which is
commonly used to solve the Maxwell equations in electro-
magnetic structures [4]. Due to its construction, which is
different from TLM and relies on fundamental symmetries
of the time evolution of the currents such as time reversal
and reciprocity [5,6], it turns out that the wave automa-
ton is fully described by a network of unitary scattering
matrices. Hence, it is affiliated to other models like the
lattice Boltzmann wave model [7,8], quantum cellular au-
tomata [9,10], network models (NWM) [11,12]. Although
also related to lattice gas automata, it differs from them
since the currents are real or complex quantities instead
of Boolean variables (see for instance the recent model for
3D electromagnetic propagation introduced in [13]).

In its previous versions, the wave automaton was
shown to be able to describe the Schrödinger, the Klein-
Gordon, the classical wave equations [6,14] and the Dirac
equation [15]. In this paper, we will focus on the Maxwell’s
equations. In contrast with the scalar wave equations, two
kinds of fields must be introduced, namely the electric field
E and the magnetic field H. It will be shown that these
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two fields emerge naturally from the general rules, which
govern the construction of the wave automaton. Moreover,
the construction handles properly the vector nature of E
and H by introducing their three Cartesian components
in the classical Yee scheme [16].

The paper is organized as follows. In Section 2, we
briefly recall the main steps of the construction along the
lines described in [6]. This includes the definition of the
currents and of the field, the propagation and scatter-
ing rules and their symmetries. We stress the importance
of the special form of the scattering matrices, which is
needed to close the wave equation. This result enables
to eliminate the currents from the equation that governs
the field evolution and makes the wave automaton equiv-
alent to a finite-difference scheme. In Section 3, we point
out the step of the construction, which differs from the
scalar wave automaton and leads to the introduction of
two interconnected kinds of fields. Due to their proper-
ties, these two fields can be identified with the electric and
magnetic fields. The resulting wave automaton leads to
the Maxwell’s equations in inhomogeneous and anisotropic
media. In conclusion, we discuss possible extensions of this
work.

2 The general construction of the wave
automaton

In this section, we introduce the definitions, notations and
the main steps of the construction of a discrete wave equa-
tion.

2.1 Definition and evolution of the currents

The currents are defined as real numbers [17] that prop-
agate along the bonds of a discrete lattice (Fig. 1a). The
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Fig. 1. (a) Propagation of currents along the bonds of a regular
lattice. (b) The bonds are labeled k = 1, . . . 2d + 1 at node r
and 2d + 2 at node r2d+1. The neighbor node that is linked
to r through bond k is referred to as rk. The bond labeled
k at node r is given the label k at node rk. In particular,
2d+ 2 = 2d+ 1 and 2d+ 1 = 2d+ 2.

nodes of the lattice are labeled by the discrete vector po-
sitions r. Although most of the results described in this
section are valid over any arbitrary lattice, we shall con-
sider in the following a cubic lattice in d dimensions. At
each time t, 2d outgoing currents sk(r, t), k = 1, . . . 2d
leave each lattice node r and propagate in one discrete
time step τ to the 2d neighbor nodes rk where they be-
come incident currents ek(rk, t + τ). We have used the
following notations. Node rk is the neighbor site, which
is linked to node r by the bond k, along which the cur-
rents ek(r, t) and sk(r, t) propagate. Moreover, bond k for
node r is referred to as bond k for node rk (Fig. 1b). With
this convention, the propagation step along the bond k of
node r (or bond k of node rk) reads ek(rk, t+τ) = sk(r, t)
and ek(r, t+ τ) = sk(rk, t). Note that since we consider a
Cartesian lattice, the index k can be associated to a par-
ticular lattice direction and k to the opposite direction.
This would not be true for a random lattice as considered
for instance in [6].

An additional outgoing current s2d+1(r, t) leaves each
node r at each time t. This current (hereafter referred
as the on-site current) can be considered as propagat-
ing along a bond labeled 2d + 1 that is attached to the
node. This bond does not connect node r to one of its
neighbor nodes rk, k = 1, . . . 2d but to a node r2d+1 that
is attached to node r (Fig. 1). The label 2d + 1 is cho-
sen for notational convenience although it does not re-
fer to any spatial direction. This propagation step reads
e2d+2(r2d+1, t + τ) = s2d+1(r, t) where e2d+2(r2d+1, t) is
the incident current at node r2d+1 and at time t. The
reverse propagating process from node r2d+1 to node r
reads e2d+1(r, t + τ) = s2d+2(r2d+1, t). According to our
notation defined above, note that 2d+ 1 = 2d + 2 and
2d+ 2 = 2d+1. All or a fraction of the current s2d+1(r, t),
which leaves node r at time t and becomes an incident cur-
rent at node r2d+1 at time t+τ , will be sent back to node r
at time t + 2τ after a scattering process to be described
below. This additional propagation step on bond 2d + 1
is equivalent to the introduction of rest particles in lattice
gas automata [8] and to the permittivity stub that is used
in the TLM method [18]. Actually node r2d+1 spatially co-

incides with node r and has only been introduced in order
to describe the process of energy trapping at each node r.
As shown later, this process is necessary to handle inho-
mogeneous media. Since node r2d+1 is attached to node r,
r2d+1 will be next referred as r in order to simplify the
notations inasmuch as there is no confusion between the
processes that take place at each of both nodes.

Each node r of the lattice is a scatterer described by a
matrix that instantaneously transforms the 2d+1 incident
currents ek(r, t), k = 1, . . . 2d+1 into 2d+1 outgoing cur-
rents sk(r, t). Hence, the scattering process is described by

sk(r, t) =
2d+1∑
l=1

dkl(r)el(r, t) k = 1, . . . 2d+ 1 (2.1)

where the dkl(r) are the elements of the (2d+1)× (2d+1)
scattering matrix D.

In the same way, node r2d+1 can be considered as
a scatterer, which transforms the single incident current
e2d+2(r2d+1, t) into the outgoing current s2d+2(r2d+1, t),
which is sent back to node r at the next time step.
Presently, s2d+2(r2d+1, t) can have any arbitrary value.
For reasons to become clear soon, the scattering process
at node r2d+1 is written as

s2d+2(r, t) = −µ2d+2(r)e2d+2(r, t) + J(r, t) (2.2)

where µ2d+2(r) and J(r, t) are unknown. As mentioned be-
fore, r2d+1 is referred as r in (2.2). Later, without sources
or losses, we shall see that (2.2) reads s2d+2(r2d+1, t) =
±e2d+2(r2d+1, t) thus corresponding to simple reflection
at node r2d+1. The time evolution of the currents is sum-
marized in Figure 2.

2.2 Definition of the fields

The field at node r and at time t is defined by a linear
combination of the incident currents

Ψ(r, t) =
2d+1∑
l=1

λk(r)ek(r, t) (2.3)

where the λk(r)’s are real coefficients to be determined
by the properties discussed below. This is the most gen-
eral definition that takes linearity into account. At this
stage, we do not associate any physical meaning to the
field Ψ(r, t). In particular, we allow for fields Ψ(r, t) and
Ψ(r′, t) at two nodes r and r′ to correspond to two differ-
ent physical quantities. We will see later that Ψ(r, t) can
be any of the Cartesian components of the electric and
magnetic fields. The location of these components will de-
pend on the node r.

2.3 Time evolution of the field

The most general explicit form of the discrete wave equa-
tion, which governs the time evolution of Ψ(r, t) can be
written:

Ψ(r, t+ τ) = f
(
Ψ(r′, t′),Ψ(r′′, t′′),Ψ(r′′′, t′′′), . . .

)
(2.4)
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Fig. 2. Scattering and propagation of currents.

where the field at node r and at time t+τ is computed from
known values of the field at specific nodes r′, r′′, . . . and
at previous times t′, t′′, etc. By using (2.3), equation (2.4)
becomes:

2d+1∑
k=1

λk(r)ek(r, t+ τ) = f

(
2d+1∑
k=1

λk(r′)ek(r′, t′),

2d+1∑
k=1

λk(r′′)ek(r′′, t′′),
2d+1∑
k=1

λk(r′′′)ek(r′′′, t′′′), . . .

)
.

(2.5)

However, if we use an arbitrary scattering matrix D,
the propagation and scattering rules of the currents that
are described in Section 2.1, do not lead to an equation
like (2.5). It has been established in [6] that an evolution

equation of the currents like (2.5) is possible if the ele-
ments of the scattering matrix D have the following form

dkl(r) = ρk(r)λl(r)− µk(r)δkl (2.6)

where the λl(r) are the coefficients introduced in the defi-
nition of the field (2.3). ρk(r) and µk(r) are new unknown
coefficients and δkl is the Kronecker symbol. Moreover,
µk(r) must satisfy the condition:

∀r, ∀k = 1, . . . 2d+ 1 µk(r)µk(rk) = M (2.7)

where the constant M is independent of the node posi-
tion r.

We do not reproduce here the derivation of (2.6)
and (2.7), which is described in details in [6]. These two
conditions are essential in the construction of the model
and have been referred to as closure conditions in [6].
Without them, it would be impossible to obtain for Ψ(r, t)
a closed equation like (2.4) where no current appears ex-
plicitly. Eventually, the current propagation and scatter-
ing rules, and (2.6, 2.7) lead to

Ψ(r, t+τ)+Ψ(r, t−τ)M

[
2d+1∑
k=1

[λk(r)ρk(r)/µk(r)]− 1

]
=

2d∑
k=1

λk(r)ρk(rk)Ψ(rk, t) + λ2d+1(r)J(r, t) (2.8)

which is the time evolution equation of Ψ(r, t) we are look-
ing for. To establish (2.8), we have also used the expres-
sion (2.2) of s2d+2(r, t). Since equations (2.6, 2.7) lead
to (2.8), they can be considered at this stage as a general
but technical recipe, which transforms the time evolution
of the currents in a finite difference scheme for the field
Ψ(r, t). However, we show now that condition (2.6) also
leads to a physical picture of the scattering process of the
currents. For this purpose, one can check that (2.6) leads
to the following form of the scattering equation (2.1)

sk(r, t) = ρk(r)Ψ(r, t)− µk(r)ek(r, t) k = 1, . . . 2d+ 1.
(2.9)

The right hand side of equation (2.9) contains two
terms: ρk(r)Ψ(r, t) and µk(r)ek(r, t). The first term states
that the field Ψ(r, t) acts as a source at node r for all out-
going currents sk(r, t) that are sent to the neighbor nodes
at the next time step. Somehow, this term can be con-
sidered as a formulation of Huygens’principle. The sec-
ond term states that the outgoing current sk(r, t) keeps
some memory of the incident current ek(r, t) along the
same bond k. This second term is essential to allow for
propagation along some given direction in modifying the
Huygens’ term, which only describes isotropic reemission
of wavelets.

As noted before, equation (2.2) is arbitrary since
µ2d+2(r) and J(r, t) are unknown. However, its expression
is actually inspired from equation (2.9) for sk(r, t), which
is only valid for k = 1, 2 . . .2d + 1. Hence, equation (2.2)
is similar to (2.9) except that the role of the source is held
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by the term J(r, t) instead of the field Ψ(r, t). We note
also that µ2d+2(r) is now connected to µ2d+1(r) via (2.7).

The construction of the model goes further by intro-
ducing fundamental symmetries of the evolution of the
currents. The first symmetry is time reversal, which im-
plies that the scattering process is reversible when the
directions of the current arrows are reversed. This yields
the condition D−1 = D for the scattering matrix. One
easily obtains

∀k = 1, . . . 2d+ 1 µk(r) = η(r) (2.10)

where η(r) = ±1 and

2d+1∑
k=1

λk(r)ρk(r) = 2η(r). (2.11)

Equation (2.8) becomes

Ψ(r, t+ τ) +MΨ(r, t− τ) =
2d∑
k=1

λk(r)ρk(rk)Ψ(rk, t)

+ λ2d+1(r)J(r, t). (2.12)

Note that (2.7) and (2.10) imply that M = ±1.
The next symmetry is reciprocity. Each matrix ele-

ment dkl of D describes one elementary scattering process,
which is transmission, reflection or scattering. It couples
the two channels (bonds) k and l. Reciprocity means that
the scattering process from k to l and the reciprocal pro-
cess from l to k have the same amplitude. In other words,
∀k, l = 1, . . . 2d+ 1, dlk = dkl. Thus, the matrix D is sym-
metrical. Note that the properties D−1 = D and D = Dt

imply that D is orthogonal. This important property im-
plies that the time evolution of the currents is uncondi-
tionally stable.

One easily obtains

∀k = 1, . . . 2d+ 1 ρk(r) = 2η(r)λk(r)/Λ(r) (2.13)

dkl(r) = η(r)
[
2λk(r)λl(r)/Λ(r) − δkl

]
(2.14)

where Λ(r) =
∑2d+1
k=1 λ2

k(r). The only parameters that re-
main unknown are the λk(r)’s.

The propagation equation (2.12) now reads

Ψ(r, t+ τ) +MΨ(r, t− τ) =

2Mη(r)
2d∑
k=1

[
λk(r)λk(rk)/Λ(rk)

]
Ψ(rk, t)+λ2d+1(r)J(r, t).

(2.15)

At this stage, it is convenient to replace the defini-
tion (2.3) of the field by

Ψ(r, t) = (1/Λ(r))
2d+1∑
k=1

λk(r)ek(r, t) (2.16)

so that (2.15) becomes

Ψ(r, t+ τ) +MΨ(r, t− τ) = (2Mη(r)/Λ(r))

×
2d∑
k=1

λk(r)λk(rk)Ψ(rk, t) + λ2d+1(r)J(r, t)/Λ(r).

(2.17)

With this new definition of the field, the scattering
equation (2.9) becomes

sk(r, t) = η(r)[2λk(r)Ψ(r, t) − ek(r, t)] (2.18)

a result that will be useful in Section 3. To establish (2.18),
we have used (2.10) and (2.13). In the same way, equa-
tion (2.2) reads

s2d+2(r, t) = J(r, t)−Mη(r)e2d+2(r, t) (2.19)

where we have used µ2d+2(r) = Mη(r), which results
from (2.7) and (2.10). As noted before, if J(r, t) = 0, then
s2d+2(r, t) = ±e2d+2(r, t) since Mη(r) = ±1.

This section achieves the general construction of a
wave automaton from first principles, namely the equiva-
lent of a discrete Huygens’ principle, which governs the dy-
namics of the currents, and fundamental symmetry prop-
erties. However, at this stage of the model, the values of
the coefficients M and λk(r) are still unknown. The next
section is devoted to the derivation of the Maxwell’s equa-
tions from appropriate choices of these parameters.

3 Derivation of the Maxwell’s equations

In this section, we set J(r, t) = 0 for convenience. The
term J(r, t) can be reintroduced later as a source term
for Maxwell’s equations. We shall also consider a homo-
geneous system. At first sight, this must imply that the
coefficients λk(r) do not depend on the node position r.
Actually, we shall see that two neighbor nodes are not
equivalent so that the coefficients λk(r) do depend on the
node position. The definition of a homogeneous system
will be made more precise during the development of this
section. First, we start by discussing the value of the pa-
rameter M .

3.1 Choice of the parameter M

The parameter M has been introduced in the closure con-
dition (2.7) as a constant independent of the node posi-
tion r. Due to the time-reversal symmetry result (2.10),
equation (2.7) reads

M = η(r)η(rk). (3.1)

As noted before, this implies that M = ±1. Since M
has the same value for all nodes r of the lattice, two sep-
arate cases must be considered: M = +1 and M = −1. If
M = +1, the left-hand side of (2.17) indicates that Ψ(r, t)
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is bound to obey a second order time derivative equation.
Moreover, ∀r, ∀rk, η(r) = η(rk) = η where η = ±1 does
not depend on node r. This case has been considered in
the previous versions of the wave automaton and leads
to the time-dependent scalar wave equation [6,14]. Hence,
we shall consider the second case M = −1 in the rest of
this paper. Then, Ψ(r, t) obeys a first order time deriva-
tive equation according to (2.17). Moreover, (3.1) implies
that ∀r, ∀k, η(rk) = −η(r). In other words, the lattice is
decomposed in two intermingled sub-lattices according to
a checkerboard pattern, one sub-lattice where η(r) = +1
and one sub-lattice where η(r) = −1. This property indi-
cates that the field at node r will have a physical content
different from the fields at its neighbor nodes rk.

A clue as to the physical content of Ψ(r, t) is provided
by time-reversal symmetry. According to (2.16), Ψ(r, t) is
defined as

Ψ(r, t) = (1/Λ(r))
2d+1∑
k=1

λk(r)ek(r, t). (3.2)

Time reversal is achieved by reversing the current ar-
rows. Hence, the time-reversed field Ψtr(r, t) is defined as
a function of the outgoing currents sk(r, t)

Ψtr(r, t) = (1/Λ(r))
2d+1∑
k=1

λk(r)sk(r, t). (3.3)

Using (2.18), one easily finds

Ψtr(r, t) = η(r)Ψ(r, t). (3.4)

Equation (3.4) means that Ψ(r, t) is invariant under
time-reversal symmetry over the sub-lattice η(r) = +1
and changes sign over the sub-lattice η(r) = −1. Hence,
anticipating the Maxwell’s equations, the fields Ψ(r, t)
over the sub-lattices η(r) = +1 and η(r) = −1 will cor-
respond to the electric and magnetic fields respectively.
From now, we introduce the following notation for these
two kinds of fields: +Ψ(r, t) and −Ψ(r, t).

3.2 Transformation of the parameters λk(r)
under local inversion

In this section, we first rewrite the wave equations for the
fields +Ψ(r, t) and −Ψ(r, t). We show that these equa-
tions are first order spatial derivative equations like the
Maxwell’s equations if the λk(r)’s behave properly under
local inversion. Let us first rewrite (2.17) with M = −1
(and J(r, t) = 0)

ηΨ(r, t+ τ)− ηΨ(r, t− τ) = −(2η(r)/Λ(r))

×
2d∑
k=1

λk(r)λk(rk)−ηΨ(rk, t) (3.5)

where

η ≡ η(r) = −η(rk) = ±1. (3.6)
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Fig. 3. Notation for central node r and its neighbors. Note
that with this notation, rkk ≡ r.

By assembling the terms k and k along each direc-
tion [k, k], (3.5) can be written

ηΨ(r, t+ τ)− ηΨ(r, t− τ) = −(2η(r)/Λ(r))
d∑
k=1

(1/2)

×
{[
λk(r)λk(rk)−λk(r)λk(rk)

][−ηΨ(rk, t)−−ηΨ(rk, t)
]

+
[
λk(r)λk(rk)+λk(r)λk(rk)

][−ηΨ(rk, t)+−ηΨ(rk, t)
]}
·

(3.7)

In (3.7), the summation is made over the d directions
[k, k] instead of the 2d bonds as in (3.5). As stated before,
we consider a homogeneous system. Since the lattice is
made of two intermingled sub-lattices η = +1 and η = −1,
this implies that each node r is not equivalent to its first
neighbors rk but to its second neighbors rkk (Fig. 3). In
the same way, node rk becomes equivalent to node rk.
Hence, we can write

λk(rk) = λk(rk). (3.8)

To go further, we remind the reader that in previous
versions of the wave automaton devoted to scalar wave
propagation, the coefficients λk(r)’s have been determined
by assuming additional symmetries such as isotropy [6] or
local inversion symmetry [14] of the scattering process.
The same symmetry arguments can be used here. In this
section, we shall start by assuming local inversion symme-
try. The part played by isotropy will be discussed in the
next sections.

It is well known that the components of the electric
field change sign under inversion of the coordinate axis.
In contrast, the components of the magnetic field do not
change sign. In other words, the electric field is a vector
field and the magnetic field is a pseudovector field. Hence,
it will not come as a surprise that the coefficients λk(r)
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will also exhibit different behaviors under local inversion.
Actually, local inversion symmetry can be defined in dif-
ferent ways. Let us start by writing it as

∀k, λk(r) = λk(r) (3.9)

Hence, using (3.8) and (3.9), (3.7) becomes

ηΨ(r, t+ τ)− ηΨ(r, t− τ) = −(4η(r)/Λ(r))

×
d∑
k=1

λk(r)λk(rk)
[−ηΨ(rk, t) + −ηΨ(rk, t)

]
/2. (3.10)

The quantity [−ηΨ(rk, t) + −ηΨ(rk, t)]/2 that appears
in (3.10) can be considered as the average field −ηΨav(r, t).
Hence, (3.10) is the discrete counterpart of the following
continuum equation

∂ηΨ/∂t = −(2η(r)/τΛ(r))
d∑

k=1

λk(r)λk(rk)−ηΨ(r, t).

(3.11)

Note that if we had chosen to write local inversion
symmetry as ∀k, λk(r) = −λk(r), we would also have
obtained (3.11). Let us compare with Maxwell’s equations,
which read in Cartesian coordinates

ε0εi ∂Ei/∂t = ∂Hk/∂xj − ∂Hj/∂xk (3.12a)

µ0µi ∂Hi/∂t = ∂Ej/∂xk − ∂Ek/∂xj (3.12b)

where i, j, k is any cyclic permutation of x, y, z. In (3.12a)
and (3.12b), ε0εi and µ0µi are the diagonal elements of
the permittivity and permeability tensors respectively. It
is obvious that (3.11) is not a first order spatial deriva-
tive equation like Maxwell’s equations (3.12). At first
sight, this result is disappointing since before stating lo-
cal inversion symmetry, the original equation (3.7) in-
cluded the discrete first order spatial derivative term
−ηΨ(rk, t)−−ηΨ(rk, t). The problem we are facing comes
from the definition (3.9) of local inversion symmetry. Ac-
tually, there is a third way to write local inversion sym-
metry, namely

∀k, λk(r) = η(r)λk(r) (3.13)

instead of (3.9). In this case, (3.7) becomes

ηΨ(r, t+ τ)− ηΨ(r, t− τ) = −(2η(r)/Λ(r))

×
d∑
k=1

λk(r)λk(rk)
[−ηΨ(rk, t)− −ηΨ(rk, t)

]
. (3.14)

The term [−ηΨ(rk, t) − −ηΨ(rk, t)]/2 in (3.14) is
the discrete spatial derivative of the field −ηΨ(r, t)
along the direction [k, k]. Hence, (3.14) has the same
form as Maxwell’s equations (3.12). Therefore, we shall
adopt (3.13) as the definition of local inversion symmetry.
This choice can give the impression that we need to know
ahead of time what the Maxwell’s equations look like so

that to be able to use the appropriate symmetries and
eventually arrive at these equations. This impression is
true but the point is that the general rules, which govern
the wave automaton, as described in Section 2 of this pa-
per contain virtually many different wave equations. Only
appropriate choices of the underlying symmetries will re-
strict this choice until we obtain the wave equation we are
looking for. Hence, the question is among all the possible
choices, is there one that leads to the Maxwell’s equations
as other choices have already led to scalar wave equa-
tions [6]. This is the way we have proceeded in adopt-
ing (3.13). Obviously, the choice of a given symmetry
should reflect a general property of the wave equation
under consideration as we show now for local inversion
symmetry as given by (3.13).

Note first, that we also obtain (3.14) if instead
of (3.13), we define local inversion symmetry by
∀r, λk(r) = −η(r)λk(r). It can be shown that the choice
between these two possibilities is a matter of convention
and we shall only consider (3.13). Let us rewrite (3.13) as

λinv
k (r) = η(r)λk(r). (3.15)

Under inversion of spatial coordinates, we can also
write

einv
k (r, t) = −ek(r, t). (3.16)

The current indices k and k are exchanged in this trans-
formation and the current takes the opposite sign since
the directions of the axes are reversed. Hence, the field
ηΨ(r, t) = (1/Λ(r))

∑2d+1
k=1 λk(r)ek(r, t) becomes

ηΨinv(r, t) = (1/Λinv(r))
2d+1∑
k=1

λinv
k (r)einv

k (r, t)

= −η(r)(1/Λ(r))
2d+1∑
k=1

λk(r)ek(r, t)

where Λinv(r) =
2d+1∑
k=1

[λinv
k (r)]2 = Λ(r).

Hence

ηΨinv(r, t) = −η(r)ηΨ(r, t). (3.17)

Equation (3.17) shows the fields +Ψ(r, t) and −Ψ(r, t)
behave in opposite ways

+Ψinv(r, t) = −+Ψ(r, t) (3.18a)
−Ψinv(r, t) = +−Ψ(r, t). (3.18b)

This is the expected behavior of the components of the
electric and magnetic fields in the Maxwell’s equations un-
der local inversion symmetry. Let us recapitulate the main
result of this section. If local inversion of the λk(r)’s is de-
fined in such a way that the wave equation (3.5) becomes
a first order spatial equation like the Maxwell’s equations,
then the fields +Ψ(r, t) and −Ψ(r, t) automatically be-
have under inversion of the coordinates as the components
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of the electric and magnetic fields respectively. We could
have done it the other way. If we impose that +Ψ(r, t) and
−Ψ(r, t) behave as the components of a vector and of a
pseudovector respectively, then equation (3.5) transforms
itself into (3.14).

At this stage, we have obtained equation (3.14) for
+Ψ(r, t) and −Ψ(r, t), which have the same time and
spatial dependence as Maxwell’s equations. To complete
the construction, we must define the physical contents of
+Ψ(r, t) and −Ψ(r, t), and establish the correspondence
between the values of the λk(r)’s and the elements of per-
mittivity and permeability tensors.

3.3 The vector fields +Ψ(r, t) and −Ψ(r, t)

Let us rewrite (3.14) for the fields +Ψ(r, t) and −Ψ(r, t) by
taking into account the results of the previous section. Re-
stricting ourselves to the three dimensional physical space
d = 3 and a being the lattice constant, equation (3.14)
becomes[

+Ψ(r, t+ τ) −+Ψ(r, t− τ)
]
/2τ = −(2c0/+Λ(r))

×
{

+tx(r)
[−Ψ(rx, t)− −Ψ(rx, t)

]
++ty(r)

[−Ψ(ry, t)− −Ψ(ry, t)
]

(3.19a)

++tz(r)
[−Ψ(rz , t)− −Ψ(rz , t)

]}
/2a

[−Ψ(r, t+ τ) −−Ψ(r, t− τ)
]
/2τ = +(2c0/−Λ(r))

×
{−tx(r)

[
+Ψ(rx, t)− +Ψ(rx, t)

]
+−ty(r)

[
+Ψ(ry, t)− +Ψ(ry, t)

]
(3.19b)

+−tz(r)
[
+Ψ(rz, t)− +Ψ(rz, t)

]}
/2a

where c0 = a/τ is the current velocity. In (3.19a)
and (3.19b), we have generalized the use of the super-
scripts + and− to emphasize that parameters like λk(r) or
Λ(r) are defined over the two distinct sub-lattices η = +1
and η = −1. In particular, we have introduced the follow-
ing condensed notation

ηtk(r) = ηλk(r)−ηλk(r). (3.20)

Equations (3.19a) and (3.19b) are the discrete versions
of the following continuum equations

∂+Ψ/∂τ = −(2c0/+Λ)

×
{

+tx∂
−Ψ/∂x+ +ty∂

−Ψ/∂y + +tz∂
−Ψ/∂z

}
(3.21a)

∂−Ψ/∂τ = +(2c0/−Λ)

×
{−tx∂+Ψ/∂x+ −ty∂+Ψ/∂y + −tz∂+Ψ/∂z

}
·

(3.21b)

Comparison with (3.12a) and (3.12b) reveals that ad-
ditional choices must be made for the wave automaton

to reduce to Maxwell’s equations. In particular, we must
stipulate that the fields we deal with are vector fields,
a statement that has not yet be done in our construc-
tion until now. At first sight, this seems to contradict the
fact that in (3.21a) and (3.21b), +Ψ(r, t) and −Ψ(r, t) are
two scalar and pseudoscalar fields respectively. Actually,
+Ψ(r, t) and −Ψ(r, t) are not vector fields but can be con-
sidered as the Cartesian components +Ψx(r, t), +Ψy(r, t),
+Ψz(r, t) and −Ψx(r, t), −Ψy(r, t), −Ψz(r, t) of appropri-
ate vector fields +Ψ(r, t) and −Ψ(r, t). Therefore, let us
rewrite (3.19a) and (3.19b) by assuming that +Ψ(r, t) and
−Ψ(r, t) are such Cartesian components[

+Ψi(r, t+ τ) −+Ψi(r, t− τ)
]
/2τ = −(2c0/+Λ(r))

×
{

+tx(r)
[−Ψk(rx, t)− −Ψk(rx, t)

]
++ty(r)

[−Ψl(ry, t)− −Ψl(ry , t)
]

++tz(r)
[−Ψm(rz , t)− −Ψm(rz , t)

]}
/2a

(3.22a)[−Ψj(r, t+ τ) −−Ψj(r, t− τ)
]
/2τ = +(2c0/−Λ(r))

×
{−tx(r)

[
+Ψn(rx, t)− +Ψn(rx, t)

]
+−ty(r)

[
+Ψo(ry, t)− +Ψo(ry , t)

]
+−tz(r)

[
+Ψp(rz , t)− +Ψp(rz , t)

]}
/2a

(3.22b)

where the indices i, j, k, l,m, n, o, p can be any of the
Cartesian coordinates x, y, z. Note first that the differ-
ent components +Ψx(r, t), +Ψy(r, t), +Ψz(r, t) cannot ex-
ist at the same nodes of the sub-lattice η(r) = +1. Oth-
erwise, we should be obliged to modify our construction
to introduce several currents propagating between nodes,
one for each component defined at the same node. In the
same way, −Ψx(r, t), −Ψy(r, t), −Ψz(r, t) are not defined
at the same nodes of the sub-lattice η(r) = −1. Hence,
our next step is to find the node location of the differ-
ent components +Ψi(r, t) and −Ψj(r, t). This task will be
facilitated by noticing that (3.22a) and (3.22b) are very
close to Maxwell’s equations (3.12) that we write below in
discrete form

[Ei(r, t+ τ)−Ei(r, t− τ)] /2τ = (1/ε0εi)

×
{[
Hk(rj , t)−Hk(rj , t)

]
−
[
Hj(rk, t)−Hj(rk, t)

]}/
2a

(3.23a)
[Hi(r, t+ τ) −Hi(r, t− τ)] /2τ = (1/µ0µi)

×
{[
Ej(rk, t)−Ej(rk, t)

]
−
[
Ek(rj , t)−Ek(rj , t)

]}/
2a

(3.23b)

where the indices i, j, k are any circular permutation
of x, y, z.

Actually, equations (3.22) are identical to equa-
tions (3.23) if the parameters ±2c0ηtk(r)/ηΛ(r) in (3.22)
are identified with the terms ±1/ε0εi and ±1/µ0µi
in (3.23). We perform this task in the next section.
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+Ψ[(2l + 1)a, 2ma, (2n+ 1)a] ≡ Ex[(2l + 1)a, 2ma, (2n+ 1)a]
+Ψ[2la, (2m+ 1)a, (2n+ 1)a] ≡ Ey[2la, (2m+ 1)a, (2n+ 1)a]

+Ψ[2la, 2ma, 2na] ≡ Ez[2la, 2ma, 2na]
−Ψ[2la, (2m+ 1)a, 2na] ≡ Hx[2la, (2m+ 1)a, 2na]
−Ψ[(2l + 1)a, 2ma, 2na] ≡ Hy[(2l + 1)a, 2ma, 2na]

−Ψ[(2l + 1)a, (2m+ 1)a, (2n+ 1)a] ≡ Hz[(2l + 1)a, (2m+ 1)a, (2n+ 1)a]. (3.24)

x

y

z

Ex Ez

Hz

Ey

Hy

Hx

2a

2a

2a

Fig. 4. Yee cell geometry. The lattice period is 2a where a is
the distance between two neighbor nodes.

3.4 Identification of the wave automaton
with Maxwell’s equations

The discrete equations (3.23) are commonly used in the
Finite Difference Time Domain Method (FDTD) [19,20]
and are associated to the Yee cell geometry [16], which
is displayed in Figure 4. In this geometry, the elec-
tric field and magnetic field components are located
at the nodes indicated in the figure. If the positions
of the different components are given in terms of the
unit step a along each direction x, y and z, and assum-
ing for instance that the component Ez is located at
the origin, the different components can be written as
Ex[(2l + 1)a, 2ma, (2n + 1)a], Ey[2la, (2m + 1)a, (2n +
1)a], Ez(2la, 2ma, 2na), Hx[2la, (2m+ 1)a, 2na], Hy[(2l+
1)a, 2ma, 2na] and Hz[(2l + 1)a, (2m + 1)a, (2n + 1)a]
where l, m and n are arbitrary integers.

Hence, comparison of (3.22) and (3.23) yields

see equation (3.24) above.

In the same way, the parameters ±2c0ηtk(r)/ηΛ(r)
in (3.22) have to be identified with the terms ±1/ε0εi and
±1/µ0µi in (3.23). Although straightforward, this task is
rather lengthy and is described in the Appendix. This re-

sults in the following set of equations

+Λ[(2l+ 1)a,2ma, (2n+ 1)a]/ε0εx

= +Λ[2la, (2m+ 1)a, (2n+ 1)a]/ε0εy

= +Λ[2la, 2ma, 2na]/ε0εz

= −Λ[2la, (2m+ 1)a, 2na]/µ0µx (3.25)

= −Λ[(2l+ 1)a, 2ma, 2na]/µ0µy

= −Λ[(2l+ 1)a, (2m+ 1)a, (2n+ 1)a]/µ0µz

which show that the elements ε0εi and µ0µj of the permit-
tivity and permeability tensors respectively are controlled
by the values of the parameters ηΛ(r) =

∑7
k=1

ηλ2
k(r). At

this stage the λk’s are still unknown. To proceed further,
we shall first consider the case of vacuum, i.e. εi = 1 and
µj = 1, before discussing the general case.

3.5 Determination of the parameters λk(r)

3.5.1 Case of vacuum

Since εi = 1 and µj = 1, from (3.25) we immediately
obtain

+Λ[(2l+ 1)a, 2ma, (2n+ 1)a] =
+Λ[2la, (2m+ 1)a, (2n+ 1)a] = +Λ[2la, 2ma, 2na] = +Λ0

(3.26)

and

−Λ[2la, (2m+ 1)a, 2na] = −Λ[(2l+ 1)a, 2ma, 2na] =
−Λ[(2l + 1)a, (2m+ 1)a, (2n+ 1)a] = −Λ0 (3.27)

where the unique values of +Λ(r) and −Λ(r) are referred
to as +Λ0 and −Λ0 respectively. Hence, (3.25) reads

+Λ0/ε0 = −Λ0/µ0. (3.28)

As mentioned in Section 2.1, the role of the currents
e7(r) and s7(r) that propagate over the bond 2d + 1 = 7
is to trap a fraction of the energy at node r at each time
step. We also know that in the scalar versions of the wave
automaton [6,14] the value of the parameter λ7(r) controls
the velocity of the wave. This will be also the case here.
In particular, the velocity of the wave is maximum when
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the trapping effect is set to zero. Hence, for vacuum we
must set λ7(r) to zero. Therefore, ηΛ0 is given by

ηΛ0 ≡
7∑
k=1

ηλ2
k =

6∑
k=1

ηλ2
k =

4∑
k′=1

ηλ2
k′ . (3.29)

In (3.29), the first equality is the definition of ηΛ0. The
second equality states that ηλ7(r) = 0. The third equal-
ity specifies that there are only four incident propagating
currents at each node of the Yee scheme (Eq. (A.19) in the
Appendix). In this equality, the index k′ has been intro-
duced to refer to the four bonds where currents actually
exist. Using (3.28) and (3.29), we obtain

1
ε0

4∑
k′=1

+λ2
k′ =

1
µ0

4∑
k′=1

−λ2
k′ (3.30)

where
∑4
k′=1

+λ2
k′ and

∑4
k′=1

−λ2
k′ do not depend on the

node position.
To proceed further, we use the last symmetry we have

not considered yet i.e. isotropy of the scattering process,
which could be written as

∀k′ = 1, . . . 4 +λ2
k′(r) = +λ2 (3.31a)

∀k′ = 1, . . . 4 −λ2
k′(r) = −λ2 (3.31b)

where +λ2 (−λ2) is the common value of the four +λ2
k′(r)’s

(−λ2
k′(r)’s) at node r. Following our observation af-

ter (3.30), we note that +λ2 and −λ2 do not depend on
the node position either. This property is expected since
we consider a homogeneous system. Due to local inver-
sion symmetry as stated by (3.13), we can rewrite (3.31a)
and (3.31b) as

∀k′ = 1, . . . 4 +λk′(r) = +λ (3.32a)

∀k′ = 1, . . . 4 −λk′(r) = δk′(r)−λ (3.32b)

where the sign δ = ±1 in (3.32b) depends on both r and k′.
In particular, because of (3.13), we know that δk′(r) =
−δk′(r).

Having in mind the general definition (2.16) of the
field Ψ(r, t), which becomes

+Ψ(r, t) =
(

+λ/+Λ0

) 4∑
k′=1

ek′(r, t) (3.33a)

−Ψ(r, t) =
(−λ/−Λ0

) 4∑
k′=1

δk′(r)ek′(r, t) (3.33b)

we are free to choose +λ > 0 and −λ > 0 by setting the
appropriate signs for the currents ek′(r, t) accordingly.

Making use of (3.30) and (3.32), we obtain

Z0 = −λ/+λ (3.34)

where Z0 =
√
µ0/ε0 is the vacuum impedance. Next,

from (3.20) and (A.17) one can check that

cν ≡ 1/
√
ε0µ0 = c0/2 (3.35)

Table 1. Coefficients −λk of the components Hx, Hy, and Hz

along the six directions x, x, y, y, z and z.

x x y y z z

Hx 0 0 −−λ +−λ +−λ −−λ
Hy +−λ −−λ 0 0 −−λ +−λ

Hz −−λ +−λ +−λ −−λ 0 0

which relates the wave velocity cν in vacuum to the veloc-
ity c0 of the currents. From (3.34) and (3.35), the permit-
tivity and permeability of free space can be written as a
function of the wave automaton parameters

ε0 = (2/c0)+λ/−λ (3.36a)

µ0 = (2/c0)−λ/+λ. (3.36b)

The fact that ε0 and µ0 depend only on the ratio
−λ/+λ is reasonable since referring again to the defini-
tions (3.33) of the fields, it is clear that +λ and −λ are
defined modulo a multiplying factor through a scaling of
the currents ek′ .

To complete the vacuum case, let us determine the
sign δk′(r) of −λk′(r) in (3.32b). To achieve this task, we
use (A.17) again. For instance, remembering the defini-
tion (3.20) of ηt, the first equality in (A.17), which reads

+λz[(2l + 1)a, 2ma, (2n+ 1)a]−λz[(2l + 1)a, 2ma, 2na]

= +Λ[(2l + 1)a, 2ma, (2n+ 1)a]/[2ε0c0] (3.37)

becomes

+λ−λδz[(2l + 1)a, 2ma, 2na] = 2+λ2/[ε0c0].

Using (3.36a), we obtain

δz[(2l + 1)a, 2ma, 2na] = +1

so that

−λz [(2l+ 1)a, 2ma, 2na] = +−λ (3.38)

and using (3.13)

−λz[(2l + 1)a, 2ma, 2na] = −−λ. (3.39)

Making use of (3.32a) and of the successive equali-
ties in (A.17), it is straightforward to obtain the other
signs δk′(r). The resulting λk′(r)’s are listed in Table 1.

These results complete the construction of the wave
automaton for Maxwell’s equations in vacuum. The coef-
ficients ηλk are all known so that the fields ηΨ and the
scattering matrices are well defined according to (3.33)
and (2.14) respectively. Let us now turn to the general
case.
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Table 2. Positions and λk values of the components Ex, Ey, and Ez, Hx, Hy, and Hz. The λk’s must be multiplied by the
scaling factor +λ.

Ex Ey Ez Hx Hy Hz

x (2l + 1)a 2la 2la 2la (2l + 1)a (2l + 1)a

y 2ma (2m+ 1)a 2ma (2m+ 1)a 2ma (2m+ 1)a

z (2n+ 1)a (2n+ 1)a 2na 2na 2na (2n+ 1)a

λx 0 1 1 0 Z0 −Z0

λx 0 1 1 0 −Z0 Z0

λy 1 0 1 −Z0 0 Z0

λy 1 0 1 Z0 0 −Z0

λz 1 1 0 Z0 −Z0 0

λz 1 1 0 −Z0 Z0 0

λ7 2
√
εx − 1 2

√
εy − 1 2

√
εz − 1 2Z0

√
µx − 1 2Z0

√
µy − 1 2Z0

√
µz − 1

3.5.2 General case

We consider a medium characterized by the diagonal ele-
ments εi and µj of its permittivity and permeability ten-
sors where i, j ≡ x, y, z. Focusing on the permittivity el-
ements εi and introducing for convenience the following
notation

+xλ7 = +λ7[(2l+ 1)a, 2ma, (2n+ 1)a]
+yλ7 = +λ7[2la, (2m+ 1)a, (2n+ 1)a]
+zλ7 = +λ7[2la, 2ma, 2na].

Equation (3.25) reads

[+Λ0 + +xλ2
7]/ε0εx = [+Λ0 + +yλ2

7]/ε0εy

= [+Λ0 + +zλ2
7]/ε0εz (3.40)

where we have used the definitions Λ =
∑7
k=1 λ

2
k

and (3.29).
Equation (3.40) clearly demonstrates that the value of

the coefficient +iλ7 is related to the corresponding per-
mittivity element εi. Since the values of the εi’s are arbi-
trary, (3.40) must be valid in the particular case where one
of the εi’s equals one and the corresponding +iλ7 vanishes.
Hence, we can write

[+Λ0 + +xλ2
7]/ε0εx = [+Λ0 + +yλ2

7]/ε0εy

= [+Λ0 + +zλ2
7]/ε0εz = +Λ0/ε0

(3.41)

which leads to

εi = 1 + +iλ2
7/

+Λ0 i = x, y, z. (3.42)

Since +Λ0 = 4+λ2 according to (3.29) and (3.32a), we
can rewrite (3.42) as

+iλ7/
+λ = 2

√
εi − 1 i = x, y, z (3.43)

which expresses +iλ7 as a function of εi.

Using (3.25) again for the permeability elements µj , it
is straightforward to find

µj = 1 + −jλ2
7/
−Λ0 j = x, y, z (3.44)

−jλ7/
−λ = 2

√
µj − 1 j = x, y, z (3.45)

where
−xλ7 = −λ7[2la, (2m+ 1)a, 2na]

−yλ7 = −λ7[(2l + 1)a, 2ma, 2na]

−zλ7 = −λ7[(2l + 1)a, (2m+ 1)a, (2n+ 1)a].

Together with (3.32a) and (3.32b), equa-
tions (3.43, 3.45) determine the whole set of the λk’s
values, which are listed in Table 2. In the next section,
we summarize the results for any material characterized
by its permittivity and permeability diagonal elements.

3.6 Fields and scattering matrices of the Maxwell
wave automaton

In this section, we write the expressions of the fields and
scattering matrices as a function of the material parame-
ters εx, εy, εz and µx, µy, µz . For that, we use the defi-
nition (2.16) of the fields Ψ, equation (2.14) for the scat-
tering elements dkl and the values of the λk’s listed in
Table 2.

Let i, j, and k to be any circular permutation of x,
y and z. The electric and magnetic fields Ei and Hi are
given by

Ei ≡ +iΨ =
(
ej + ej + ek + ek + 2

√
εi − 1 e7

)/
4εi+λ

(3.46)

Hi ≡ −iΨ

=
(
−ej + ej + ek − ek + 2

√
µi − 1 e7

)/
4µiZ0

+λ.

(3.47)
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DE = 1/εi

0
BBBBBBBBBBBB@

1/2 − εi 1/2 1/2 1/2
√
εi − 1

1/2 1/2− εi 1/2 1/2
√
εi − 1

1/2 1/2 1/2 − εi 1/2
√
εi − 1

1/2 1/2 1/2 1/2− εi
√
εi − 1

√
εi − 1

√
εi − 1

√
εi − 1

√
εi − 1 εi − 2

1
CCCCCCCCCCCCA

(3.48)

DH = 1/µi

0
BBBBBBBBBBBB@

−1/2 + µi 1/2 1/2 −1/2
√
µi − 1

1/2 −1/2 + µi −1/2 1/2 −
√
µi − 1

1/2 −1/2 −1/2 + µi 1/2 −√µi − 1

−1/2 1/2 1/2 −1/2 + µi
√
µi − 1

√
µi − 1 −

√
µi − 1 −

√
µi − 1

√
µi − 1 2− µi

1
CCCCCCCCCCCCA

· (3.49)

The associated scattering matrices DE and DH read

see equations (3.48, 3.49) above.

Note that the coefficient +λ appears in the expres-
sion (3.46) and (3.47) of the fields since the currents are
defined modulo an arbitrary multiplying constant. In con-
trast, the scattering matrices cannot depend on this scal-
ing factor, as confirmed by (3.48) and (3.49). Last, let us
remind that the locations of the field components Ei and
Hi, i = x, y, z are given in Table 2.

4 Discussion and conclusion

In the spirit of the previous versions of the wave automa-
ton devoted to scalar [6,14] or spinor [15] wave propa-
gation, we have described a wave automaton capable of
modeling Maxwell’s equations in the time domain. As
several Maxwell’s equations solvers have been introduced
for a long time, it is important to compare our results
with other methods. The Maxwell wave automaton shares
common features essentially with three other algorithms,
namely cellular automata [8], the TLM method [18] and
the FDTD method [19,20]. Therefore, it will be compared
with those three methods successively.

Cellular automata have been developed for many years
to simulate the behavior of complex systems. A special
class of cellular automata termed lattice gas automata has
been devoted to fluid dynamics. They are defined by par-
ticles moving in discrete time steps from node to node of
a discrete lattice. At each node, the particles experience
collisions according rules, which mimic the collisions of
classical particles. The basic propagation and scattering
rules of the wave automaton are very similar. However, in
contrast with the wave automaton, the particles of cellu-
lar automata are described by Boolean variables allowing
the use of low precision arithmetic. Due to this feature

and to their collision rules, their application to partial dif-
ferential equations concerns essentially the Navier-Stokes
equation of hydrodynamics. Quite recently, a lattice gas
automaton using binary variables has been introduced to
describe the three-dimensional electromagnetic fields [13].
Successful simulations of resonant frequencies within vari-
ous cavities have validated this attempt. However, in con-
trast with the wave automaton, this lattice gas automa-
ton has not yet been analytically proven to be equivalent
to Maxwell’s equations. In the last few years, the lattice
Boltzmann method [8], which is an extension of cellular
automata from Boolean to real numbers dynamics, has
been successfully used to describe wave propagation from
first principles [7]. However, until now, such attempts have
been limited to the scalar wave equation.

The method to which the wave automaton bears most
resemblance is the TLM method. Both methods rely on
a discrete equivalent of Huygens’ principle. In particular,
although they do not refer to any a priori electromagnetic
property, one can think of the wave automaton currents
as equivalent to the voltage pulses in TLM. Moreover,
one of the most appealing features in TLM originates in
the use of passive electrical networks, which guarantees
the numerical stability of TLM algorithms. While this
is not as obvious as in TLM, we have shown that sta-
bility is also one of the main properties of the wave au-
tomaton. This is due to the fact that the scattering ma-
trices are orthogonal, a property that results from time
reversal symmetry and reciprocity. Hence, even though
both methods differ in their foundations, one can wonder
whether the resulting algorithms are identical. In partic-
ular, are the scattering matrices the same in both meth-
ods? To make such a comparison, let us first recall that
several algorithms, which rely on the usage of different
nodes, have been developed in TLM to describe 3D elec-
tromagnetic fields, the most popular being the symmet-
rical condensed node (SCN) [21]. Among those different
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algorithms, the expanded node, which is made of inter-
weaving shunt and series two-dimensional nodes [22], has
been used extensively before the advent of the SCN node.
Like the Maxwell wave automaton, its geometry is the
Yee cell. Hence, the Maxwell wave automaton can only
be compared with the expanded node TLM algorithm. In
this algorithm, the scattering matrices are associated to
the shunt and series two-dimensional nodes, which rep-
resent the electric and magnetic field components respec-
tively. We do not reproduce here those scattering matrices,
which are well known in the TLM literature [23]. Com-
parison with DE (Eq. (3.48)) and DH (Eq. (3.49)) shows
that the wave automaton scattering matrices actually dif-
fer from the TLM ones. In particular, the TLM scattering
matrices are not symmetrical, not either orthogonal ex-
cept in the case of vacuum (εi = 1 and µi = 1) where they
become identical to the wave automaton ones. Hence, al-
though they are strongly akin, the wave automaton and
TLM methods are surprisingly different. As pointed out
above, TLM can use different algorithms to describe 3D
electromagnetic fields. Hence, one can wonder whether it
is possible to find appropriate TLM nodes that are de-
scribed by the wave automaton scattering matrices DE

and DH . We are not aware of the existence of such nodes
at the present time.

Finally, how does the wave automaton compare with
the FDTD method? At first sight, both methods are dif-
ferent in their foundations. The FDTD method results
from finite- difference expressions for the space and time
derivatives of the Maxwell’s equations in the Yee cell ge-
ometry. In contrast, the Maxwell wave automaton results
from the time evolution of the currents, which mimic a dis-
crete Huygens’principle. However, we have shown that by
introducing appropriate field definitions and fundamental
physical symmetries, the wave automaton also describes
the FDTD discrete equations in the Yee cell geometry.
Hence, both methods are equivalent.

To recapitulate, while the Maxwell wave automaton
shares the same modeling philosophy as the cellular au-
tomata or the TLM method, it has been shown that it is
only strictly equivalent to the FDTD method. This equiv-
alence calls for some observations. First, any solution of an
electromagnetic investigation in the time domain using the
wave automaton approach is bound to give results identi-
cal to those obtained with FDTD. Obviously, the Maxwell
wave automaton is still in the infancy and does not benefit
from the numerous developments of the FDTD method.
For instance, this wave automaton has been shown to be
equivalent to the second-order finite-difference scheme by
Yee. A question that can be posed is, which modifications
should be brought in the derivation of the model to ob-
tain higher order finite-difference schemes. We have no
clue at the moment for such better schemes. In order to
bring up the wave automaton to the status of a versatile
Maxwell’s equations solver like FDTD or TLM, many im-
provements are still to be introduced such as dissipation,
dispersion or absorbing boundary conditions to cite a few
ones. However, its present status already enables one to
solve electromagnetic propagation in inhomogeneous and

anisotropic media. Next, because of this equivalence, it
is legitimate to ask for the benefits to be expected from
the Maxwell wave automaton when compared to FDTD
or other methods. As a numerical tool to solve Maxwell’s
equations, it does not bring at this stage of development
any new advantage in precision or speed. Its more appar-
ent practical advantages are the same as the attractive
features of cellular automata and TLM, namely stability
and the intuitive and easy way to write programs respec-
tively. Especially, it is well adapted to parallel architec-
tures since the time evolution of the currents only involves
local scattering and propagation to nearest neighbors. Ac-
tually, the main interest in the wave automaton is not
practical but conceptual. It is remarkable that the sim-
ple picture of current’s scattering and propagation with
appropriate fundamental symmetries, which was already
introduced in the past to rebuild the scalar wave equa-
tion [6,14] is still effective for the more complicated case
of the 3D Maxwell’s equations. This result might seem to
be obvious since it is well known that Huygens’ principle
is contained in Maxwell’s equations. However, the rather
lengthy developments of this paper show that the link be-
tween the discrete equivalents of Huygens’principle and of
the Maxwell’s equations is not straightforward. In partic-
ular, we are not aware of any retrieval of finite difference
algorithms for Maxwell’ equations straight from physical
principles as was done in the present work rather than
from the classical discretization of the continuous equa-
tions using the standard mathematical methods that are
well-known in numerical PDEs. The only attempt brought
to our knowledge is the lattice gas automaton described
in [13]. However, as pointed out before, this automaton
has not been proven yet to be equivalent to Maxwell’s
equations.

Eventually, the advantage of the wave automaton pic-
ture of Maxwell’s equations is expected to manifest it-
self in providing intuitive answers to questions raised in
specific applications. To illustrate this point, let us focus
our attention on dissipation, which was not considered in
this paper. In FDTD, dissipation is handled by taking
into account electric and magnetic conductivities. In the
wave automaton, there are several ways to impose losses.
The most intuitive ones are to introduce damping factors
in the propagation or the scattering step of the currents.
Preliminary results show that this procedure is equivalent
to introducing correlated electric and magnetic conduc-
tivities in the resulting finite difference equations. Further
work is needed to explore and compare the consequences of
these different possibilities. Similar intuitive pictures can
be considered in order to introduce dispersion or absorb-
ing boundary conditions. The hope is not only to retrieve
in a simple way the techniques already known in FDTD
or TLM, but also to shed new light over those techniques
in the frame of the discrete Huygens’principle. Hopefully,
new schemes are expected to emerge from this approach.

The author wishes to thank O. Legrand, F. Mortessagne and
P. Sebbah for useful discussions and for a critical reading of
the manuscript.
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+Ψ[(2l + 1)a, 2ma, (2n+ 1)a] ≡ Ex[(2l + 1)a, 2ma, (2n+ 1)a]
+Ψ[2la, (2m+ 1)a, (2n+ 1)a] ≡ Ey[2la, (2m+ 1)a, (2n+ 1)a]

+Ψ[2la, 2ma, 2na] ≡ Ez[2la, 2ma, 2na]
−Ψ[2la, (2m+ 1)a, 2na] ≡ Hx[2la, (2m+ 1)a, 2na]
−Ψ[(2l + 1)a, 2ma, 2na] ≡ Hy[(2l + 1)a, 2ma, 2na]

−Ψ[(2l + 1)a, (2m+ 1)a, (2n+ 1)a] ≡ Hz[(2l + 1)a, (2m+ 1)a, (2n+ 1)a] (A.16)

Appendix

In this appendix, we identify the wave automaton equa-
tions (3.22) with the Maxwell’s equations (3.23). Let us
compare equations (3.22a, 3.23a) for the case of the com-
ponent Ex, i.e.

+Ψ[r] = Ex[r] (A.1)

at nodes r = {(2l+ 1)a, 2ma, (2n+ 1)a} and
−Ψ[r] = Hz[r] (A.2)
−Ψ[r] = Hy[r] (A.3)

at neighbor nodes {(2l + 1)a, (2m + 1)a, (2n + 1)a} and
{(2l+1)a, 2ma, 2na} respectively. Moreover, we must have

− 2c0+ty[(2l + 1)a, 2ma, (2n+ 1)a]
+Λ[(2l+ 1)a, 2ma, (2n+ 1)a]

=

+
2c0+tz[(2l + 1)a, 2ma, (2n+ 1)a]

+Λ[(2l+ 1)a, 2ma, (2n+ 1)a]
=

1
ε0εx

· (A.4)

Hence,

+tz[(2l + 1)a, 2ma, (2n+ 1)a] =

− +ty[(2l + 1)a, 2ma, (2n+ 1)a]. (A.5)

A peculiarity of the Yee cell geometry is that some
nodes are vacant. For instance, the nodes Ex have no
neighbor components Hj along the x direction. Accord-
ingly, we shall set that the field −Ψ(r) is not defined for
r = {2la, 2ma, (2n+ 1)a}. Hence, we write that the cor-
responding −λk’s vanish
−λk[2la, 2ma, (2n+ 1)a] = 0 ∀k = 1, 2, . . . 7 (A.6)

and that no currents propagate to or from nodes
{2la, 2ma, (2n+ 1)a}. In particular, there are no currents
along the x axis that contributes to the definition of the
field +Ψ ≡ Ex at nodes r = {(2l + 1)a, 2ma, (2n+ 1)a}.
Hence, we write

+λk[(2l+ 1)a, 2ma, (2n+ 1)a] = 0 k = x, x. (A.7)

Instead of seven currents, only five incident currents ek
at nodes r = {(2l+1)a, 2ma, (2n+1)a} enter the definition
of +Ψ, which reads

+Ψ(r) ≡ Ex(r) = λy(r)[ey(r) + ey(r)]
+ λz(r)[ez(r) + ez(r)] + λ7(r)e7(r). (A.8)

From (A.6) or (A.7), we also obtain

−tk[2la, 2ma, (2n+ 1)a] = 0 ∀k = 1, 2, . . . 7
(A.9)

+tx[(2l+ 1)a, 2ma, (2n+ 1)a] =
+tx[(2l+ 1)a, 2ma, (2n+ 1)a] = 0.

(A.10)

The identification of other components is similar. Be-
fore providing the final results, it is worth making a few
remarks about the way to obtain them. First, at any va-
cant node (see Fig. 4), the corresponding ηλk will vanish.
Hence, in addition to (A.6), one finds

+λk[(2l + 1)a, (2m+ 1)a, 2na] = 0 ∀k = 1, 2, . . .7
(A.11)

and accordingly

+tk[(2l + 1)a, (2m+ 1)a, 2na] = 0 ∀k = 1, 2, . . . 7.
(A.12)

Next, according to their definition (3.20), the param-
eters tk verify

ηtk(r) = −ηtk(rk). (A.13)

As a consequence, knowing ηtk at some node r pro-
vides immediately the values −ηtk at its neighbor nodes rk.
Knowing −ηtk(rk), we also get −ηtk(rk) since

−ηtk(rk) = −η−ηtk(rk) (A.14)

which follows from (3.20) and (3.13). Last, at each node,
one finds an equation similar to (A.5), i.e. the two non zero
values ηtk and ηtl along two perpendicular directions k
and l verify

ηtk = ±ηtl. (A.15)

Eventually, we obtain the following set of identities

see equation (A.16) above
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and

+tz[(2l + 1)a, 2ma, (2n+ 1)a] =
+Λ[(2l+ 1)a, 2ma, (2n+ 1)a]/[2ε0εxc0]

= −+ty[(2l+ 1)a, 2ma, (2n+ 1)a]

= ++tx[2la, (2m+ 1)a, (2n+ 1)a]

= +Λ[2la, (2m+ 1)a, (2n+ 1)a]/[2ε0εyc0]

= −+tz[2la, (2m+ 1)a, (2n+ 1)a]

= ++ty[2la, 2ma, 2na]

= +Λ[2la, 2ma, 2na]/[2ε0εzc0]

= −+tx[2la, 2ma, 2na]

= +−tz[2la, (2m+ 1)a, 2na]

= −Λ[2la, (2m+ 1)a, 2na]/[2µ0µxc0]

= −−ty[2la, (2m+ 1)a, 2na]

= +−tx[(2l + 1)a, 2ma, 2na]

= −Λ[(2l+ 1)a, 2ma, 2na]/[2µ0µyc0]

= −−tz[(2l + 1)a, 2ma, 2na]

= +−ty[(2l+ 1)a, (2m+ 1)a, (2n+ 1)a]

= −Λ[(2l+ 1)a, (2m+ 1)a, (2n+ 1)a]/[2µ0µzc0]

= −−tx[(2l + 1)a, (2m+ 1)a, (2n+ 1)a] (A.17)

to which we must add (A.6, A.11) and

+tx[(2l+ 1)a, 2ma, (2n+ 1)a] = 0
+ty[2la, (2m+ 1)a, (2n+ 1)a] = 0

+tz[2la, 2ma, 2na] = 0
−tx[2la, (2m+ 1)a, 2na] = 0
−ty[(2l + 1)a, 2ma, 2na] = 0

−tz[(2l + 1)a, (2m+ 1)a, (2n+ 1)a] = 0. (A.18)

Although equations (3.22) are now fully identical to
Maxwell’s equations (3.23), the construction of the wave
automaton is not completed since most of the λk’s re-
main unknown. At this stage, we only know the λk’s that
are equal to zero at the vacant sites according to (A.6)
and (A.11). Moreover, according to (A.18) we can also
write

+λx[(2l + 1)a, 2ma, (2n+ 1)a] = 0
+λy[2la, (2m+ 1)a, (2n+ 1)a] = 0

+λz [2la, 2ma, 2na] = 0
−λx[2la, (2m+ 1)a, 2na] = 0
−λy[(2l + 1)a, 2ma, 2na] = 0

−λz[(2l + 1)a, (2m+ 1)a, (2n+ 1)a] = 0. (A.19)

The values of the other λk’s are obtained in the main
text by using the implicit equations (A.17).

From (A.17), we immediately obtain
+Λ[(2l+ 1)a,2ma, (2n+ 1)a]/ε0εx =

+Λ[2la, (2m+ 1)a, (2n+ 1)a]/ε0εy

= +Λ[2la, 2ma, 2na]/ε0εz (A.20)

= −Λ[2la, (2m+ 1)a, 2na]/µ0µx

= −Λ[(2l+ 1)a, 2ma, 2na]/µ0µy

= −Λ[(2l+ 1)a, (2m+ 1)a, (2n+ 1)a]/µ0µz

which are reported to as equations (3.25) in Section 3.4.
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